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Note 

Application of the Multigrid Method to Poisson’s Equation in 
Boundary-Fitted Coordinates 

1. INTRODUCTION 

In the past few years there has been considerable activity in the development of 
multigrid methods for the numerical solution of partial differential equations 
governing fluid flow problems. Significant improvement in the convergence rate of 
iterative finite difference schemes can be achieved by employing a multigrid approach 
to the following: elliptic equations such as the Poisson and Helmholtz equations [ 11, 
the Cauchy-Riemann equations [2], transonic full nonlinear potential flow equations 
[ 31, and incompressible Navier-Stokes equations as for the driven square cavity flow 
[4-61. Successful applications of the multigrid method to finite element and boundary 
integral methods can be found in [7]. 

The multigrid technique is a general strategy for solving partial differential 
equations by cycling between coarser and finer levels of discretization. The method is 
based on elimination of error components whose wavelengths on a given grid are 
comparable to the point spacing in the grid. By cycling between coarse and fine grids, 
both high- and low-frequency components of the error are reduced efficiently. The 
multigrid method is highly efficient since most of the computation occurs on coarser 
grids rather than the finest grid upon which the solution is sought. 

The present note reports results showing an order of magnitude reduction in 
computer time when applying the multigrid method to the solution of the Poisson 
equation in boundary-fitted coordinates. To the author’s knowledge, little or no work 
on the application of the multigrid method to equations in boundary-fitted coor- 
dinates has been reported previously. 

2. POISSON PROBLEM DEFINITION 

For the solution of fluid flow problems, the use of numerical transformations that 
map boundary-fitted coordinates (the body being a coordinate line) in physical space 
onto a Cartesian coordinate system of a computational space (see [8]) has become 
quite common place (see [9]). The equations often used to generate such a mapping 
are 

581/50/2-9 

r,, + r,, = m, 91, ?xx + ryy = m zl), (1) 
307 

OOZl-9991183 $3.00 
Copyright 0 1983 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



308 SAMUEL OHRING 

where P and Q are specified functions of < and 7. In the computational (<, 9) space 
these equations become 

aXtt - 2/7x,, + I’%,,, + J2(Pxt + Qx,) = 0, 

ay,, - 2PYrq + w,, + J2(Pyl + Qy,) = 0. 

Poisson’s equation 

wx, + wyy = w, Y) 

is represented on the computational space as 

“J’,, - %“,, + IV,, + J2(Pwt + Qv,) = F 

(2) 

(3) 

(4) 

with 

a=x5,+y5,, P=x&J+YsY?j, 

r=x; +y:, J=x,Y, -x,Y~. (5) 

In this note the particular mapping of the physical space of Fig. la onto the 
computational space of Fig. lb will be considered. The physical space coordinate 
system is the result of solving Eq. (2) subject to Dirichlet data (given (x, y) pairs) at 
the boundaries of the (<, q) computational space which fix the physical location of the 
boundary grid points. A Cartesian mesh (not shown) overlays the computational 
space. The wedge-shaped body maps onto the slit in computational space. The 
functions P and Q are chosen to be 

p(r) = -x&J39 Q(v) = -Y,,.,/(Y,>“~ (6) 

with the derivatives evaluated only at the outer boundaries of the computational 
space. This selection produces nearly orthogonal grids at the outer boundaries of the 
physical space [lo]. 

The physical coordinate system of Fig. la will be used in the numerical simulation 
of a jet flow from a channel on the left impinging on the wedge-shaped body. This 
flow problem will not be discussed here. Instead, two test problems for the multigrid 
method will be considered using the jet flow geometry. Specifically, Eq. (4) will be 
solved on the computational space of Fig. lb but excluding the channel (see Fig. 2) 
and subject to two sets of boundary conditions. 

Problem 1: 

v2y = 0, 

g,=g,=g3=g‘+=o; g,= 1. (7) 



FIG. la. Physical coordinate system of mapping (Computer generated and drawn). 
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FIG. lb. Computational space of mapping (Cartesian coordinate system with uniform spacing 
At = Ar] = 1 not shown). 

Problem 2: 

v*ly=o, 
g*=--“’ 

27 g3=f; g,=o; g, = 0; 
g, = -Wf - y2/3) (8) 

Discretization of Problems 1 and 2 in this paper is accomplished by replacing all 
derivatives by central second-order differences (i.e., in Eq. (4) wE = (w(r + A<, ‘I) - 
w(r - &, 77))/(2@) + O((d~)*)). Uniform mesh spacing is used with & = A? = 1. 

These two problems are motivated by the desire to solve the Navier-Stokes 
equations in stream function-vorticity form, where the stream function is represented 
by v/ and the vorticity by F in Eq. (4). Two test problems arise because the stream 
function is an unknown constant on the body in the jet flow problem. Solutions to 
Problems 1 and 2 must be superposed such that the pressure remains single-valued in 
the doubly connected region, thus determining the unknown value of the stream 
function constant [ 111. In Problem 2, g, represents Couette flow in the channel. For 
the purposes of this paper the vorticity is set to zero to yield potential flow. The 
solutions of Problems 1 and 2 are initial conditions for a time-dependent viscous jet 
flow calculation. 

FIG. 2. Computational space for Problems 1 and 2. 
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3. USE OF THE MULTIGRID METHOD 

The Cycle C algorithm of [l] is used to solve Problems 1 and 2. This algorithm 
starts on the finest grid with several relaxation sweeps (usually 2 or 3) for the system 
of simultaneous linear equations that represents the finite difference approximations 
to Problems 1 or 2. At first, convergence is rapid, with short wave length components 
of the error essentially being eliminated. When the convergence rate slows, the longer 
wave length components of the error remain. The equation for the error at each grid 
point (the residual equation) is then transferred to a coarser subgrid which has twice 
the spacing of the fine grid. On this coarser subgrid the longer wavelength error 
components are shorter in terms of grid interval representation. A few relaxations 
essentially eliminate these shorter components on this coarser subgrid. Upon 
convergence, the error (called the correction) is added to the approximate fine grid 
solution at each point and a few more relaxation sweeps on the fine grid commence, 
starting with this improved approximate solution. If convergence occurs to within a 
specified tolerance, the process is complete. If it does not, an updated error equation 
at each point is transferred to the coarser subgrid. If the solution to the error equation 
at each point on the coarser subgrid has not converged after a few relaxation sweeps, 
the error equation of the error equation at each grid point is transferred to a still 
coarser subgrid, etc. Every error (residual) equation at each point has its own error 
(residual) equation on a still coarser subgrid. Each residual equation is treated in the 
same fashion as the original problem on the finest grid. Thus a multiple sequence of 
grids can be used for a rapid solution procedure. 

This algorithm contains three key parts: (1) the type of relaxation sweeps, (2) 
transfer of the error equation at each grid point to a coarser subgrid, and (3) inter- 
polation of the coarse subgrid error (correction) for addition to an approximate 
solution at ‘each grid point of the next finer grid. 

In this note linear interpolation is used which according to Brandt [ 1 ] is sufficient 
for linear second-order equations. 

The transfer of-the error (residual) equation at each grid point to a coarser subgrid 
is accomplished in the following way: At each point the residual equation for the 
error (which is the difference between an approximate and exact discrete solution) 
has the same differential operator (left-hand side) as Eq. (4) and thus is finite 
differenced at each point on the coarser subgrid in the usual manner. The right-hand 
side is the residual (the amount by which an approximate discrete solution fails to 
exactly satisfy the discrete equation at a grid point). A local weighted average is 
taken of these residuals at fine grid points about a fine grid point coincident with the 
coarser subgrid point. This weighted average is then taken to be the residual at this 
coarser subgrid point. These weighted averages can be viewed as a smoothing process 
in which residuals are made further representable on a caarser subgrid. Weighting of 
residuals is essential for linear equations with rapidly varying coefficients (which is 
the case here due to the stretching of the physical coordinate system (Figure la) and 
for nonlinear equations [I]. The stencil used here for the weighted average at a fine 
grid point is shown in Figure 3a. 
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FIG. 3. (a) Stencil for weighting of residuals; (b) schematic drawing for “four-color” relaxation 
scheme. 

A very successful relaxation scheme used in this note was a “four-color” scheme in 
which points of like symbol (Figure 3b) were relaxed simultaneously. These four 
groupings were relaxed in succession. This scheme performed far better than 
“simultaneous point relaxation” (Jacobi point iteration) as a “smoother” in 
eliminating high-frequency error components. The “four-color” scheme and the 
analogous “red-black” (two color) relaxation scheme along with Jacobi point 
iteration are vectorizable on most parallel processor computers. This vectorization 
results in an additional order of magnitude savings in computer time. Successive 
point relaxation is not vectorizable and therefore was not considered. Although the 
“four-color” scheme is vectorizable on the Texas Instruments Advanced Scientific 
Computer TX-ASC on which the computations were performed, this vectorization 
was not done due to additional computer storage requirements. The “red-black” 
scheme is not vectorizable on the TI-ASC. 

Three parameters that govern the algorithm are now defined. The numerical 
solution to Problem 1 or 2 on the finest grid GM had to satisfy the following specified 
convergence criterion: 

For all cases considered the fixed parameter sM was input as 0.001, which is the 
estimated order of the truncation error. Here IIEllFZ is the L, error norm of E (the 
vector of dynamic (calculated while sweeping) residuals). That is, IIEllFZ is the length 
of E on the finest grid GM. (Superscripts are not exponents.) A fixed parameter A 
(0 < 1 < 1) was specified for all grids such that, if (IIEIJ~,)‘f’/((IEl)~2)i < I, 
convergence was considered rapid enough to continue relaxation sweeps. (Here k 
refers to a kth grid and i is the number of the iteration sweep). When transferring to 
a coarser subgrid G - , k ’ the convergence criterion to be satisfied on the coarser 
subgrid Gk- ’ k became (1 E II:; ’ Q S((l E IIL,) il, where the fixed specified parameter 6 
satisfies 0 ( 6 < 1 and i, is the last iteration sweep on grid k before transfer. 

The Cycle C algorithm can be used efficiently when a reasonable starting guess for 
the solution on the finest grid is available. Since such a guess exists for the test 
problems, namely zero everywhere except for specified boundary values, Cycle C was 
used. 
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4. RESULTS 

Results are presented in Tables I-III. The grid size for the computational space 
(Fig. 2) was 113 x 2 17, with 113 points in the q-direction and 217 points in <. The 
multigrid method used four grids (including the finest). Here WU refers to a work 
unit, which is equivalent to the work done during a relaxation sweep on the finest 
grid. (Overhead, such as coarse grid transfers of residual equations and inter- 
polations, is not included in the number of work units). The number of arithmetic 
operations in a work unit is 5 In, where n is the number of grid points (here 
n = 113 x 2 17). At the expense of storing computer arays for the coefficients a, /I, y, 
J (which can be preprocessed) of Eq. (4) in computer memory, the arithmetic 
operation count for a work unit can be reduced to 31n, but this was not done here. 
By CPU we refer to total central processor computer time in seconds; RF is the 
relaxation factor. The value of jIEjlfz has been rounded off to four significant digits in 
the tables. 

The results in Tables I and II show an order of magnitude reduction in computer 
time when the multigrid method uses the “four-color” scheme and a somewhat 
smaller reduction when using point Jacobi iteration compared to the continuous use 
of the corresponding relaxation schemes on the finest grid only. The results are even 
more favorable for the multigrid method than indicated by the CPU times since a 
maximum of 700 WU’s were permitted. Because of this maximum, two of the three 
nonmultigrid cases were terminated before convergence. 

Table III shows that the pair (A, 6) was not “robust” in the sense that a change in 
choice of (A, 6) caused a significant change in convergence rate. The choice of RF 
also affected the convergence rate. Similar results concerning the dependence of the 
convergence rate on (A,@ and RF were found for Problem 1 and point Jacobi 
iteration. The choices of parameters (A, 6) = (0.3,O. 15) in Tables I and II were the 
best of several tried in the unit square (RF = 1.6 is approximately optimal). 

TABLE I 

Problem 1 

Using multigrid method Using relaxations only 

Relaxation scheme “Four-color” “Four-color” 

II El?* 0.001 0.0022 
(A 4 (0.3,0.15) - 
RF 1.0 1.6 

wu 29.23 700.00 
CPU 27.64” 471.89” 

a Indicates full vectorization requiring additional computer storage was not used. With full 
vectorization, CPU times would be approximately one-third those quoted. 
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TABLE11 

Problem 2 

Using 
multigrid 
method 

Using 
relaxations 

only 

Using 
multigrid 
method 

Using 
relaxations 

only 

Relaxation 
scheme 

“four-color” “four-color” Point Jacobi Point Jacobi 

II Ell?z 0.0008 0.001 0.001 0.0014 
(4 4 (0.3,0.15) - (0.3,0.15) 
RF 1.6 1.6 - 
wu 41.56 359.00 112.40 700.00 
CPU 40.73" 244.4 la 50.95 132.91 

‘See Table I for explanation. 

TABLE III 

Problem 2-Multigrid Method with “Four-Color” Scheme Only 

II Ellt 
(5 6) 
RF 
wu 

CPU 

0.0008 0.001 0.001 0.001 
(0.3,0.15) (0.6,0.3) (0.3,0.15) (0.6.0.3) 

1.6 1.6 1.0 1.0 
47.56 259.00 119.0 366.5 
40.73" 198.04” 94.27' 279.46" 

’ See Table I for explanation. 
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